Table of contents

Introduction to Bash 2
pwd: Find out where weare L L 2
1s: List the contents of a directory 3
The structure of a command 4
Getting help L 4
cd: Move around folders Lo 4
mkdir: Make new folders 6
wget: Download data 7
cp: Copying data L 8
mv: Moving data L L 9
tar: Work with tar files 9
rm: Remove files and folders oo oL 10
Wildcards oo e 11
I/O redirection to new files Lo 14
Exploring the content of text files., 14

tail: View the last rowsofafile 15

less: View the fullfile o oo 15
we: Count things L L 16
Pipes. . . . o e 16
cut: Extract elements from strings oo 17
sort and uniq: Create unique lists oo 19
cat: Read and combine files Lo oL 20
Exploring the content of compressed fastq files 21

gzip: (De)compress files oo 22
grep: Find patternsindatao oo 23
wc: Count things IT. o 25
For-loops e 26

Introduction to Bash

pwd: Find out where we are

After installing and starting the terminal, let’s orient ourselves by typing our first command,
pwd, into the terminal and pressing enter.

pwd
pwd prints the location of the current working directory and tells you where exactly you are

in the file system. When we start our terminal we typically start from what is called our
home directory.

@ Tip: finding the desktop on different user systems

Your home directory will be something like /Users/YourUserName but the path might
be slightly different depending on your operating system. Below you find some hints
to orient yourself better for different terminal interfaces/operating systems:

For MAC users:

e The home directory should be /Users/YourUserName
e To access the current folder in Finder you can try using open .
¢ Your desktop should be here /Users/YourUserName/Desktop

For Mobaxterm users:

¢ Your home directory is /home/mobaxterm
e By default this home directory is in a temporary folder that gets deleted every
time you exit Mobaxterm, To give this folder a persistent home, do the following;:

— Settings —> Configuration —> General
— In General set Persistent home directory to a folder of your choice

e To access the current folder in the file explorer you can type explorer.exe .

e The path to the desktop should something like
this /mnt/c/Users/YourUserName/OneDrive/Desktop or
/mnt/c/Users/YourUserName/Desktop

For WSL2 users:

e The home directory is /home/YourUserName
e To access the current directory in the file explorer you can type explorer.exe

e The path to the desktop would be something like
this /mnt/c/Users/YourUserName/OneDrive/Desktop or
/mnt/c/Users/YourUserName/Desktop

Accessing the Uva OneDrive folder:

To access the OneDrive Uva folder, you need to add quotes between the absolute file
path since bash does otherwise not know what to do with the space in the file name,
i.e. cd "/mnt/c/Users/UserName/OneDrive - Uva". This is also a good example for
why you normally do NOT want to add spaces in your filepath.

1s: List the contents of a directory

Now that we know where we are, let’s find out what files and folders exist in our home
directory. For this you can use the 1s command, which allows us to list all the contents of
the directory you are currently in:

1s

In my case this returns something like this (and this will look different for your current
directory):

The colors will look different depending on the CLI you use but in the example above you
see a list of files (in bold text) and folders (green-highlighted text) that can be found in my
current directory.

Since this output can easily become over-whelming if we deal with a lot of files and folders,
lets look a bit closer into how we can optimize our commands by looking at the general
structure of a command.

The structure of a command

A command generally consists of three elements, the command itself and some optional
options and arguments:

Understanding better what a command looks like, let’s use the 1s command together with
the option -1. This option results in 1s printing the content of a folder in what is called a
long listing format.

1s -1

After running this, we see our files and folders again but in a long format, which gives more
detailed information and structures our output a bit better. In the example below we can
see that we now print additional information about who owns the files (i.e. access modes),
how large the files are, when they were last modified and of course the name:

Getting help

If you want to know what options are available for a command (or software tool) it is always
a good idea to check out the manual. In most of the cases you can do this with:

man 1s

You exit the manual by pressing q.

In case you want to check what a program does or what options there are, depending on
the program there might be different ways to access the manual. The most common ways
are:

e man ls
e 1s --help
e 1s -h

cd: Move around folders

Most of the time you do not want to perform your analyses in the home directory but in a
dedicated folder for your project. To get started, we will learn about the cd command that
allows us to move around the file system.

The file system is a hierarchical system used to organize files and directories. It is a tree-like
structure that starts with a single directory called the root directory, which is denoted by
a forward slash (/). All other files are “descendants” of the root. To move from the root
into other folders, we can go via the descendants to, for example, reach the john folder as
follows: /users/john.

If we specify the location of a folder or file starting from the root directory, we use what is
called an absolute path. If we specify the location relative to our current directory, such
as our home directory, we use what is called a relative path.

To start moving around the file system, let’s begin by moving relative to our working
directory by moving into any of the folders that you saw listed after you have used 1s -1.
In my case I want to move into the source directory. If you run this, choose any folder you
see after running the 1s command:

cd source/

If you use pwd after moving around directories, you should see that a different location is
printed to the screen.

We can also move back to our original directory using cd ... This command will move us
back one directory (and move us out of the source and back into the home directory).

cd ..

We can also move around multiple levels. In the example below, I am going into the source
folder, then back to the home directory and then into the docs folder.

cd source/../docs
Another useful way to move around quickly is using the tilde symbol, ~, which can be used
as a shortcut to move directly into our home directory from wherever you are on the file

system:

cd ~

O Exercise

Explore your current location with pwd and 1s and move around with cd and try
to get used to these three commands. If you are more comfortable, try finding your

Deskop based on the tip in the section about pwd.

mkdir: Make new folders

Now that we know how to explore our surroundings, let’s make a new folder in which we
start our data analysis. For this we use the mkdir command.

To do this, we will first move into our home directory and then create and move into a new

folder called data_analysis as follows:

#go into the home directory
cd ~

#in the home directory make a new folder and name it data_analysis
mkdir data_analysis

#check if new folder was generated correctly
1s

#move into the newly generated folder
cd data_analysis

#check if we correctly changed our location
pwd

@ Tip: Commenting your code

Notice, how in the example below I added the commands to run as well as some
explanation about what I did?

Here, I used a specific character # in front of a line of text to denote the beginning of
a single-line comment. Anything coming after the character is considered a comment
and won’t be executed by the shell.

In the above example I definitely commented the code too much as my comments
basically duplicate the code and that should be avoided, however, it is useful to add
comments in code to ensure that the purpose of the code is clear to others.

You could, for example, add a comment above functions to describe what the function
does and you can also add comments to “tricky” code where it is not immediately
obvious what you are trying to do. Basically, you want to add comments to any section

where you think that the future you might get confused a month later.
Here you find some examples for python and R but the same logic applies when writing
code for bash, some examples for that can be found here.

@ Tip: Command-line completion

Most command-line interpreters allow to automatically fill in partially typed commands,
file paths or file names.

So instead of having to type out data_analysis completely when changing the
directory, we can let the interpreter do the work for us.

To do this, start from the home directory (or wherever you ran the mkdir command)
and type cd data_ and press the Tab-key on your keyboard. The cli should have
auto-completed the folder name automatically.

If there are multiple options, such as data and data_ analysis, the cli can not auto-
complete the folder name, however, by pressing Tab twice you will see all options to
extend the name.

While we talk about being lazy: If you press the arrow-up key on your keyboard you
can cycle through commands you already ran and this often times can be useful to
recycle code snippets (i.e. if you are trying certain settings and want to quickly change
a small section of your code).

wget: Download data

Next, let’s download our sequencing data, called seq project.tar.gz using wget. In the
command below we add the option -P to specify into which folder we want to download
the data.

#download data using link provided by the sequencing center on

— 23.01.2023

wget

— https://github.com/ndombrowski/cli_workshop/raw/main/data/seq_project.tar.gz

In this example, you can also see how I documented my code here in order to add some
more specifics about where the link came from to help future me in case I, for example,
need to look for some e-mails about the data later on.

https://best-practice-and-impact.github.io/qa-of-code-guidance/code_documentation.html
https://linuxize.com/post/bash-comments/

I Wget for Mac users

For Mac users wget is not installed by default. If you do not want to install it, run
the following:

curl -LO
— https://github.com/ndombrowski/cli_workshop/raw/main/data/seq_project.tar.gz

O Exercise

1. Check with 1s if the file was downloaded correctly
2. Check the manual if there are extra options that we can use for 1s to check the
file size (advanced)

Click me to see an answer

#question 1:
1s -1

#question 2:
1s -1h

cp: Copying data

When working with many files a good folder structure is essential to keep track of our files.
To keep our project folder organized, we will copy the seq_project.tar.gz file we just
downloaded into a special folder that we will call data.

#fmake a folder for our raw data
mkdir data

#move the tar.gz file into the data folder
cp seq_project.tar.gz data/

#check what happened
1s -1

1ls -1 data

When running the two 1ls commands, we see that we now have two copies of
seq_project.tar.gz, one file is in our working directory and the other one is in our data
folder. Copying large amounts of data is not ideal since we will use unneccassary space.
However, we can use another command to move the tar folder into our data folder.

mv: Moving data

mv is the command we can use to move data across locations without generating a copy.
We run it as follows:

#move the tar.gz file into the data fodler
mv seq_project.tar.gz data/

#check what happened
1s -1
1s -1 data

Notice that mv will move the tar file and, without asking, overwrite the existing tar file we
had in the data folder when we ran cp. This means for you that if you run move its best to
make sure that you do not overwrite files by mistake.

tar: Work with tar files

The data we downloaded is provided as a tar file:

o tar is short for Tape Archive, and sometimes referred to as tarball

e The TAR file format is commonly used when storing data

e TAR files are often compressed after being created and then become TGZ files, using
the tgz, tar.gz, or gz extension.

We can decompress the data into our data folder as follows:
tar -xvf data/seq_project.tar.gz -C data

The options we use with the tar command are:

x tells tar to extract files from the archive

v displays verbose information while creating the tarball

f specifies the file name

C tells tar to change directory (so the package content will be unpacked there)

@ Tip: how to generate a tarball

If you ever want to generate a tarball you can do the following:
tar -cvzf my_tarball.tar.gz folder_to_tar

The options we use are:

e c create an archive by bundling files and directories together
e z use gzip compression when generating the tar file

O Exercise

1. After extracting the tarball use 1s to explore the content of the folder we just
extracted. Ensure that you explore the content of potential sub-directories.

2. Find the path for at least one sequence file that ends on fastq.gz. Hint: to make
your life easier, check the Tip: Command-line completion above to not have
to type every single word.

Click me to see an answer

#question 1:
1ls -1 data/seq_project

#question 2:
1s -1 data/seq_project/barcode001_Userl ITS_1_L001/

rm: Remove files and folders

To remove files and folders, we use the rm command. We want to remove the
seq_ project.tar.gz file since we do not need it anymore once we have extracted the data:

10

#rm a file
rm data/seq_project.tar.gz

##icheck if that worked
1ls -1 data

If we want to remove a folder, we need to tell rm that we want to remove folders using an
option. To do this, we use -r , which allows us to remove directories and their contents
recursively.

! Important

Unix does not have an undelete command.
This means that if you delete something with rm, it’s gone. Therefore, use rm with
care and check what you write twice before pressing enter!

Wildcards

After we have explored the folder with our sequencing data with 1s, we have seen that
data/seq_project contains 4 folders, 2 folders for two different users who each generated
two samples.

You also might have also noticed that it gets tedious to figure out how many files are in
each folder because we would need to run 1s on each single folder and view its contents
individually.

Luckily, the shell provides special characters to rapidly specify groups of filenames or
patterns. Wild-cards are characters that can be used as a substitute for any class of
characters in a search.

The * wildcard is the wildcard with the broadest meaning of any of the wildcards, it can
represent 0 characters, all single characters or any string of characters. It allows us to list
all files in the seq_project folder as follows:

1s data/seq_project/*

11

Is data/seq_project/*
will return:

data/seq_project/barcode6®l_Userl ITS_1_L661:
Sample-DUMMY1_R1.fastq.gz
Sample-DUMMY1_R2.fastq.gz

data/seq_project/barcode602_Userl_ITS_9_L661:
Sample-DUMMY2_R1.fastq.gz
Sample-DUMMY2_R2.fastq.gz

data/seq_project/barcode®®3_User2_ITS_1_L6O1:
Sample-DUMMY3_R1.fastq.gz
Sample-DUMMY3_R2.fastq.gz
data/seq_project/barcode®@uy_User2_ITS_9_L6O1:

Sample-DUMMY4_R1.fastq.gz
Sample-DUMMYU4_R2.fastq.gz

The * matches all characters after
seq_project/ and therefore will
list all folders and the content of each folder

You should have seen before that the sequencing files all end with .fastq.gz we can
make this command a bit more specific and at the same time make the output a bit more
readable:

1s data/seq_project/*/*.gz

Is data/seq_project/*/*.gz
will return:

data/seq_project/barcode®®l_userl_ITS_1_LO©1/Sample-DUMMY1_R1.tastq.gz
data/seq_project/barcode@@l_Userl_ITS_1_L001/Sample-DUMMY1_R2.fastq.gz
data/seq_project/barcode@02_Userl_ITS_9_L001/Sample-DUMMY2_R1.fastq.gz
data/seq_project/barcode@02_Userl_ITS_9_L601/Sample-DUMMY2_R2.fastq.gz
data/seq_project/barcode@@3_User2_ITS_1_L001/Sample-DUMMY3_R1.fastq.gz
data/seq_project/barcode@@3_User2_ITS_1_L001/Sample-DUMMY3_R2.fastq.gz
data/seq_project/barcode®ou_User2_ITS_9_L001/Sample-DUMMY4_R1.fastq.gz
data/squpruject/barcodeeeuAUserzAITSA9_L961/Sample—pUHMVu_R2.fastq.gz

The first * matches all characters between The second * matches all characters between
seq_project/ and the next / the last / and .gz

If we wanted to print the absolute and not the relative path, we could do the following
(beware that the absolute path will be slightly different depending in you system):

1s /home/User_name/data/seq_project/*/*.gz

Now we can easily see for each folder how many files we have.

12

O Exercise

1. Use a wildcard to list files for barcode001 only

Use a wildcard to only list R1 (i.e. forward) files

3. Use a wildcard to copy all R1 files into a new folder, call this new folder R1_files.
Use 1s to confirm if you copied the right files

4. To avoid duplicates, remove the R1_ files folder from question 3 after you have
ensured the command you used worked

o

Click me to see an answer

#question 1:
1s data/seq_project/barcode001x*/*gz

#question 2:
1s data/seq_project/*/*R1x

#question 3:

mkdir R1_files

cp data/seq_project/*/*R1* R1_files
1s data/seq_project/*/*.gz

1s -1 R1_files

#question 4:
rm -r R1_files

After solving question 2 you should see:
Is data/seq_project/*/*R1*

will return:
data/seq_project/barcode@®l_Userl ITS_1_L601/Sample-DUMMY1_R1.fastq.gz
data/seq_project/barcode®®2_Userl_ITS_9_L061/Sample-DUMMY2_R1.fastq.gz
data/seq_project/barcode®®3_User2_ITS_1_L601/Sample-DUMMY3_R1.fastq.gz
data/seq_project/barcode®®y_User2_ITS_9_L001/Sample-DUMMYU_R1.fastq.gz
The first * matches all characters between The last * matches all characters after
seq_project/ and the next / the pattern R1

The second * matches all characters between
the last / and the pattern R1
After solving question 3, we should see that all files still exist in its original location
but are now also inside of the R1_files folder. Notice, how we can use wildcards
together with other commands to easily reorganize our data?

13

@ Tip: More wildcards

* is not the only wildcard we can use and a full list can be found here.

Different wildcards can be useful in different contexts, not only only when listing files
but also finding patterns in files. To make such searches as specific as possible there
are different wildcards available. A few examples are:

The [0-9] wildcard = matches any number exactly once and allows us to extract a
range of files.

1s data/seq_project/barcode00[0-9]*/*.gz

The [012] wildcard = matches 1 or 2 exactly once and allows us to extract a range of
files.

1s data/seq_project/barcode00[12]*/*.gz

[A-Z] matches any letter in capitals occurring once
[a-z]* matches any letter in non-capital letters occurring many times

1ls data/seq_project/barcode001_Userl ITS_1_[A-Z]001/*.gz

1/0 redirection to new files

We have seen that by default our commands directly print the standard output to the
terminal. For example, when we use 1s the list of files and folders is printed to your terminal.
However, we can also redirect the standard output to a file by using the > character.

For example, we might want to generate a list with all fastq files and can do this as follows:

1s data/seq_project/*/* > fastq_paths.txt

Exploring the content of text files

Next, let’s view the content of the list we just generated. Viewing the actual files we work
with is often important to ensure the integrity of our data.

14

https://tldp.org/LDP/GNU-Linux-Tools-Summary/html/x11655.htm

head: View the first rows of a file
head can be used to check the first 10 rows of our files:

head fastq_paths.txt

tail: View the last rows of a file

If you want to check the last 10 rows use tail:

tail fastq_paths.txt

less: View the full file
less is a program that let’s you view a file’s contents one screen at a time. This is useful
when dealing with a large text file (such as a sequence data file) because it doesn’t load the

entire file but accesses it page by page, resulting in fast loading speeds.

less -S fastq_paths.txt

e You can use the arrow Up and Page arrow keys to move through the text file
o To exit less, type q

@ Tip: Editing text files

You can also edit the content of a text file and there are different programs available
to do this on the command line, the most commonly used tool is nano, which should
come with most command line interpreters. You can open any file as follows:

nano fastq_paths.txt

Once the document is open you can edit it however you want and then

e Close the document with control + X
e Type y to save changes and press enter

15

wc: Count things

Another useful tool is the we (= wordcount) command that allows us to count the number
of lines via -1 in a file. It is an useful tool for sanity checking and here allows us to count
how many files we work with:

wc -1 fastq_paths.txt

After running this we see that we work with 8 files.

We could of course easily count this ourselves, however, if we work with hundreds of files its
a quick and easy way to get an overview about how much data we work with.

One down-side of this approach is that to be able to count the number of files, we first need
to generate a file in which we count the number of files. This (i) can create files we do not
actually need and (ii) we use two commands while ideally we want to get the information
with a single command.

Pipes

Pipes are a powerful utility to connect multiple commands together. Pipes allow us to feed
the standard output of one command, such as 1s as input into another command, such as
wc -1, and as such combine multiple commands together.

Therefore, let‘s use 1s to first list all fastq files and then pipe the output from 1s into the
wc command in order to count with how many files we work with:

1s data/seq_project/*/* | wc -1

We should see again that we work with 8 files, but now we did not have to generate an
intermediate text file and have a more condensed command.

O Exercise

1. Use Is and wc to count how many R1 files we have
2. Count how many R2 files we have
3. Count how many files were generated for Userl

Click me to see an answer

16

#question 1: We see 4 files
1ls data/seq_project/*/*Rl*gz | wc -1

#question 2: We see 4 files
1ls data/seq_project/*/*R2*gz | wc -1

#question 3: We see 4 files
1ls data/seq_project/*_Userl_x*/xgz | wc -1

Checking whether we have the same number of R1 and R2 files is a good sanity check,
to ensure that we have received all the files from the sequencing center whenever we
generate paired-end sequencing data.

cut: Extract elements from strings

Remember, how we stored a list of sequencing files and the path leading to these files
(relative to our home directory in a text file called fastq_paths.txt)?

Imagine that we only wanted to have a list of files but not the path, how would we do
that?

There are different ways to do this, the simplest one is to use cd and go into the folder with
our sequence files and generate a list in there.

However, another way in which we do not have move around (and learn some other concepts)
is to use the cut command. cut allows us to separate lines of text into different elements
using any kind of delimiter, for example the / that we use in the file path. To ensure that
/ is seen a separator we use the -d option and with -f4 we tell cut to print the fourth
element of each separated field.

head fastq_paths.txt
#extract the file name (i.e. the fourth field when using a /
— separator)

cut -f4 -d "/" fastq_paths.txt

#do the same as above but this time save the output in a new file
cut -f4 -d "/" fastq_paths.txt > fastq_files.txt

17

cut _d ||/||

will return the following elements:

data/seq_project/barcodegol_userl_ITS_1_L861/Sample-DUMMY1_R1.tastq.gz
data/seq_project/barcode®0l1_Userl_ITS_1_L061/Sample-DUMMY1_R2.fastq.gz
data/seq_project/barcode®02_Userl_ITS_9_L061/Sample-DUMMY2_R1.fastq.gz
data/seq_project/barcode®02_Userl_ITS_9_L061/Sample-DUMMY2_R2.fastq.gz
data/seq_project/barcode®03_User2_ITS_1_L061/Sample-DUMMY3_R1.fastq.gz
data/seq_project/barcode®03_User2_ITS_1_L061/Sample-DUMMY3_R2.fastq.gz
data/seq_project/barcode®6uy_uUser2_ITS_9_L061/Sample-DUMMYU_R1.fastq.gz
data/seq_project/barcode®ou_User2_ITS_9_L061/Sample-DUMMY4_R2.fastq.gz

P T

elementl element2 element3 element4

To extract the file name, we can print only the 4th element with:
cut-f4-d"/"

We can also combine this with pipes in order to extract different pieces of information. Let’s
assume we start with extracting a folder name, such as barcode002_User1_ITS_9_L001,

and from that we want to extract some other information, such as the barcode IDs. We
can easily do this as follows:

cut -f3 -d "/" fastq_paths.txt | cut -f1 -4 "_"

18

cut -f3 -d "/" fastq_paths.txt

will return the following:

barcode®®01_Userl_ITS_1_L661
barcode®01_Userl_ITS_1_L661
barcode®02_Userl_ITS_9_L661
barcode®02_Userl_ITS_9_L661
barcode®03_User2_ITS_1_L601
barcode®03_User2_ITS_1_L661
barcode®04_User2_ITS_9_L661
barcode®@uy_User2_ITS_9_L661

We can further subset this with
cut-f1-d" "
barcode®01_Userl_ITS_1_L06061
barcode®01_Userl_ITS_1_L6061
barcode®02_Userl_ITS_9_L06061
barcode®02_Userl_ITS_9_L6061
barcode®83_User2_ITS_1_L6061
barcode®03_User2_ITS_1_L06061

barcode®6U_User2_ITS_9_L6061
barcode®@U_User2_ITS_9_L0061

\
elementl — element5

To return the barcodelD,
i.e. the first element

Nice, we now only have a list with barcodes. However, its not yet ideal since we have
duplicated barcodes. If you want to extract this information for some metadata file this is
not ideal and we need to get to know two more commands to make this work:

sort and uniq: Create unique lists

e sort: sorts lines in a file from A-Z
e uniq: removes or finds duplicates . For this command to work you need to provide it
with a sorted file

Let’s first ensure that our barcode list is sorted to then extract only the unique information:

cut -f3 -d "/" fastq_paths.txt | cut -f1 -d "_" | sort | uniq

O Exercise

1. Use cut on fastq paths.txt to print the folder names in which the fastq.gz files
reside (i.e. barcode001_Userl ITS_1_L001)

19

2. Print the folder names as in 1 and then extract the user names from this list
3. Ensure that when running the code from 2 that we print a unique list of user
names

Click me to see an answer

#question 1:
cut -f3 -d "/" fastq_paths.txt

#question 2:
cut -f3 -4 "/" fastq_paths.txt | cut -f2 -4 "_"

#question 3:
cut -f3 -d "/" fastq_paths.txt | cut -f2 -d "_" | sort | uniq

cat: Read and combine files

cat can do different things:

1. Create new files

2. Display the content of a file

3. Concatenate, i.e. combine, several files. For concatenation we can provide cat with
multiple file listed after each other or use a wildcard.

To view files we do:
cat fastq_paths.txt
To combine files we do:

#combine files
cat fastq_paths.txt fastq_files.txt > combined_files.txt

#view new file
cat combined_files.txt

20

O Exercise

Fastq.gz files can easily be combined using cat and while this is not strictly necessary
in our case, you might need to do this with your sequence files in the future. For
example if you sequenced a lot of data and for space reasons the sequencing center
send you multiple files for a single sample.

1. Using wildcards and cat, combine all R1 fastq.gz files into a single file
2. Use Is to judge the file size of the individual R1 files and the combined file to
assess whether everything worked correctly

Click me to see an answer

#question 1:
cat data/seq_project/*/*Rl.fastq.gz > combined_R1.fastq.gz

#question 2:
1ls -1h data/seq_project/*/+Rl.fastq.gz
ls -1h combined_R1l.fastq.gz

If you compare the two numbers generated for question 2, you should see that the
combined.fastq.gz file is roughly the sum of the individual files.

Exploring the content of compressed fastq files

O Exercise

1. View the first few rows of any one of the fastq.gz sequence files
2. Does this look like a normal sequence file to you?

Click me to see an answer

head
— data/seq_project/barcode001_Userl_ ITS_1_LOO1/Sample-DUMMY1_R1l.fastq.gz

After running this command you will see a lot of random letters and numbers but
nothing that looks like a sequence, so what is going on?

21

gzip: (De)compress files

After downloading and exploring the content of the downloaded folder, you have seen that
the file we downloaded ends with gz. This indicates that we work with a gzip-compressed
file. gzip is a tool used to (de)-compress the size of files.

In order to view the content of compressed files, we sometimes need to de-compress them

first. We can do this using the gzip command together with the decompress -d option:

gzip —-d
— data/seq_project/barcode001_Userl ITS_1_LOO1/Sample-DUMMY1_R1l.fastq.gz

head
- data/seq_project/barcode001_Userl ITS_1_L001/Sample-DUMMY1_R1.fastq

After running this, we finally see a sequence and some other information. Notice that for
fastq files we always should see 4 rows of information for each sequence as shown below:

O Exercise

1. After running the gzip command above, make a list of each sequence file with 1s
2. Use 1s with an option to also view the file size and compare the size of our
compressed and uncompressed files.

Click me to see an answer

#question 1:
1ls -1 data/seq_project/*/x*

#question 2:
1ls -1h data/seq_project/*/*

We see that our file has a file size of about ~25M after compression while the compressed
files are around ~5M.

When working with sequencing files the data is usually much larger and its best to
keep the files compressed to not clutter your computer.

To keep our files small its best to work with the compressed files. If we want to compress a
file, we can do this as follows:

22

gzip
— data/seq_project/barcode001_Userl_ITS_1_LOO1/Sample-DUMMY1_R1l.fastq

1s data/seq_project/*/x*

zcat: Decompress and print to screen

We have seen that to view the content of a compressed file and make sense of the content
we had to first decompress the file. However, sequence files tend to get rather large and we
might not want to decompress our files to not clutter our system.

Luckily, there is one useful tool in bash to decompress the file and print the content to the
screen called zcat. When running zcat on a file then the original compressed file is kept
as is. We combine the zcat command with the head command, since we do not want to
print millions of sequences to the screen but only want to explore the first few rows:

zcat
- data/seq_project/barcode001_Userl ITS_1_L001/Sample-DUMMY1_R1.fastq.gz
< | head

I Zcat for Mac users

For Mac users using the zsh shell, zcat might not work as expected. Try using gzcat
instead:

gzcat
— data/seq_project/barcode001_Userl ITS_1_L001/Sample-DUMMY1 R1l.fastq.gz
< | head

grep: Find patterns in data

The grep command is used to search for words, or patterns, in any text file. This command
is simple but very useful for sanity checks after file transformations.

Let’s first search for some things in the text files we generated, for example, we might want
to only print information for the R1 files:

23

#grep a pattern, here R1, in fastq_paths.txt
grep "R1" fastq_paths.txt

We see the list of files that match our pattern. If we simply are interested in the number of
files that match our pattern, we could add the option —c to count how often the pattern we
search for occurs.

grep -c "R1" fastq_paths.txt

We can also use grep with wildcards, for example, if we want to look only at samples from
Userl we could do the following:

grep "Userl_x" fastq_paths.txt

O Exercise

1. Grep for paths containing the pattern “ITS_9” in fastq paths.txt
2. Grep for the pattern “AAGACG” in any of the fastq.gz files (advanced)
3. Count how often “AAGACG” occurs in any in any of the fastq.gz files (advanced)

Click me to see an answer

#1
grep "ITS_9" fastq_paths.txt

#2

zcat

- data/seq_project/barcode001_Userl ITS_1_LO01/Sample-DUMMY1_R1.fast
< | grep "AAGACG"

#3

zcat

— data/seq_project/barcode001_Userl ITS_1_L001/Sample-DUMMY1_R1.fast
— | grep -c "AAGACG"

The last two commands can be very useful to check if sequencing adapters or primers
are still part of your sequence.

1-82

1-82

24

wc: Count things Il

We have seen before that wec is a command that allows us to count the number of lines in
a file and we can easily use it on fastq files to get an idea about how many sequences we
work with:

zcat
- data/seq_project/barcode001_Userl ITS_1_L001/Sample-DUMMY1_R2.fastq.gz
— | wc -1

After running this we see that we work with 179,384 / 4 sequences. We need to divide
the number we see on the screen by 4 since each sequence is represented by 4 lines of
information in our fastq file.

@ Avanced Tip: Better counting

We have seen that we need to divide the output of wc by four to get the total number
of sequences. We can do this with a calculator but actually, some intermediate bash
can also be used to do this for us:

zcat
— data/seq_project/barcode001_Userl_ITS_1_L0OO1/Sample-DUMMY1_R2.fastq.gz
< | echo $(($(wc -1) /4))

In the command above we have some new syntax:

e The echo command is used to display messages or print information to the
terminal. In our case it will print whatever is going on in this section $(($(wc
-1) /4))

e $(...) indicates a command substitution. It allows the output of the enclosed
command (wc -1) to be used as part of another command. Without command
substitution (wc -1 alone), you would not capture the output; instead, you would
only see the literal text “wc -1

e $((...)): This is an arithmetic expansion in Bash. It allows you to perform
arithmetic operations inside the brackets and substitute the result into the
command line. In this case, it calculates the result of dividing the number of
lines in the fastq file by 4.

e /4: This is dividing the result obtained from wc -1 by 4. Since each sequence in
a FASTAQ file is represented by four lines (identifier, sequence, separator, and
quality scores), dividing the total number of lines by 4 gives the number of

25

sequences.

For-loops

Imagine we want to count the lines not only from one but all files. Could we do something
like the code below?

zcat data/seq_project/*/*.gz | wc -1

When running this, we see that the command prints a single number, 869 944, but not the
counts for each file, so something did not work right.

The problem with this command is that it prints the text from all 8 fastq files and only
afterwards performs the counting. We basically concatenated all files and then calculated
the sum of all 8 files. However, what we want to do is to repeat the same operation over
and over again:

Decompress a first file

Count the lines in the first file
Decompress a second file

e Count the lines in the second file

A for loop is a bash programming language statement which allows code to be repeatedly
executed. l.e. it allows us to run a command 2, 3, 5 or 100 times.

Let’s start with a simple example but before that let’s introduce a simple command echo.
echo is used to print information, such as Hello to the terminal:

echo "Welcome 1 time!"

We can use for-loops to print something to the screen not only one, but two, three, four ...
times as follows:

for i in 1 2 3; do

echo "Welcome $i times"
done

26

An alternative and more condensed way of writing this that you might encounter in the
wild is the following:

for 1 in 1 2 3; do echo "Welcome $i times"; done

Here, you see what this command does step by step:

Let’s try to do the same but now for our sequencing files by storing the individual files found
in data/seq_project/*/*.gz in the variable i and print i to the screen in a for-loop.

for i in data/seq_project/*/*.gz; do
echo "I work with: File $i"
done

e for i in data/seq_project/*/*.gz; do: This part initializes a loop that iterates
over all files matching the pattern data/seq_project/*/*.gz. The variable i is
assigned to each file in succession.

We can then use these variables stored in i to perform more useful operations, for example
for each file, step-by-step, count the number of lines in each file by using some of the tools
we have seen before:

for i in data/seq_project/*/*.gz; do
zcat $i | wc -1
done

e zcat $i | wc -1: This is the action performed inside the loop. zcat is used to
concatenate and display the content of compressed files (*.gz). The | (pipe) symbol
redirects this output to wc -1, which counts the number of lines in the uncompressed
content.

O Exercise

1. Use a for loop and count how often grep finds the pattern “TAAGA” in each
individual fastq.gz file

Click me to see an answer

27

for i in data/seq_project/*/*.gz; do
zcat $i | grep -c "TAAGA"
done

Sometimes it is useful to not store the full path in i, especially when we want to store
the output of our loop in a new file. Luckily, we can use the list of files we stored in
fastq_files.txt to rewrite this command a bit and make use of the fact that we can use
cat to print something in a text file to the screen:

for 1 in “cat fastq_files.txt ; do
zcat data/seq_project/*/$i | wc -1
done

e for i in “cat fastq_files.txt™; do: This initiates a loop that iterates over each
item in the file fastq_files.txt. The backticks * are used to execute the cat command
within the backticks to read the content of the text file and assign its output to the
variable i.

o zcat data/seq_project/*/$i | wc -1: Like before, this line uncompresses (zcat)
and counts (wc) the number of lines in the specified file. However, in this case, the
file is determined by the content of fastq_files.txt, which contains a list of file names.

After this modification of the code, we can very easily store the output in a file instead of
printing the results to the screen.

#Count the number of lines in each sequencing file
#Store the output in a new folder
mkdir counts

for 1 in “cat fastq_files.txt ; do
zcat data/seq_project/*/$i | wc -1 > counts/$i.txt
done

1s -1 counts/*txt

head counts/Sample-DUMMY1_R1.fastq.gz.txt

28

@ Avanced Tip: Better counting in for loops

Let’s get a bit more advanced to show you some powerful features of bash. For this
imagine that you would do this for 100 files. In this case it would be useful to see the
file names next to the counts. We can achieve this by using what we have learned in the
Better counting tip where we have learned about echo and command substitution.

for i in data/seq_project/*/*.gz; do
echo "$i: $(zcat $i | wc -1)"
done

e The echo command is used to display messages or print information to the
terminal. In our case it will print whatever is going on here "$i: $(zcat $i |
wc -1)"

e $(...): These parentheses are used for command substitution. It means that
the command zcat $i | wc -1 is executed, and its output (the line count of
the uncompressed content) is substituted in that position.

o The double quotes (““) perform what is called a string concatenation. It
concatenates the filename ($i), a colon (:), a space, and the line count obtained
from the command substitution. The entire string is then passed as a single
argument to the echo command.

Almost perfect, now we only want to divide this by 4:

for i in data/seq_project/*/*.gz; do
echo "$i: $(($(zcat $i | wc -1) /4)"
done

Notice, how we use both single brackets and double brackets?

e $((...)) in contrast to $(...) is an arithmetic expansion in Bash. It allows
you to perform arithmetic operations and substitute the result into the command
line.

@ Avanced Tip: Using bash to make sample mapping files

For a lot of mapping files for amplicon analyses, you need to prepare a table that lists
your files, often with the R1 and R2 files in separate columns. How could we do this
using bash?

29

This code is more advanced and uses a few concepts we have not talked about but
should give you an idea about the different data transformations you can do with
bash.

for file in data/seq_project/*/*.gz; do
if [[$file == *_Rl1.fastq.gz]]; then
rli file=$file
r2_file=$(echo $file | sed 's/_R1/_R2/"')
echo "$r1 file,$r2_file"
fi
done

1. for file in data/seq_project/*/*.gz: We loop through all fastq.gz files

2. if [[$file == x_R1l.fastq.gz]1]; then: This line checks if the current
file’s name matches the pattern * Rl1.fastq.gz. The [[... 1] is a conditional
construct in bash, and the == is used for string comparison. If the condition is
true (i.e., the file is an R1 file), then the code inside the if block will be executed.
The block starts with ifand finishes at the fi.

3. r1_file=$file: This line involves creating a variable named r1_ file and assign-
ing it the value of the current file ($file). A variable is a symbolic name or
identifier associated with a value or data. It allows you to store and retrieve
information for later use. Here, r1_ file is used to store the name of the current
R1 file.

4. r2_file=$(echo $file | sed 's/_R1/_R2/'): This line sets the variable
r2_file by replacing _ R1 with _ R2 in the current file name. This is done
using the sed command, which is a stream editor for filtering and transforming
text.

5. echo "$r1_file,$r2_file": This line prints the R1 and R2 file names sepa-
rated by a comma. This will be part of the output in the format R1,R2.

We can do even more and add a column with the sample name with what we have
learned before:

30

for file in data/seq_project/*/*.gz; do
if [[$file == *_Rl.fastq.gz]]; then
sample_name=$(echo $file | cut -£3 -4 "/")
ri_file=$file
r2_file=$(echo $file | sed 's/_R1/_R2/')
echo "$sample_name,$rl_file,$r2_file"
fi
done

You can easily combine this with some of the things we learned, such as using cut to
extract specific parts of the sample_name as well. L.e. lets assume you only want to
list the index:

for file in data/seq_project/*/*.gz; do
if [[$file == *_Rl.fastq.gz]]; then
sample_name=$(echo $file | cut -£f3 -4 "/" |cut -f1 -d
- "_")
rl_file=$file
r2_file=$(echo $file | sed 's/_R1/_R2/')
echo "$sample_name,$rl_file,$r2_file"
fi
done

31

	Introduction to Bash
	pwd: Find out where we are
	ls: List the contents of a directory
	The structure of a command
	Getting help
	cd: Move around folders
	mkdir: Make new folders
	wget: Download data
	cp: Copying data
	mv: Moving data
	tar: Work with tar files
	rm: Remove files and folders
	Wildcards
	I/O redirection to new files
	Exploring the content of text files
	tail: View the last rows of a file
	less: View the full file

	wc: Count things
	Pipes
	cut: Extract elements from strings
	sort and uniq: Create unique lists
	cat: Read and combine files
	Exploring the content of compressed fastq files
	gzip: (De)compress files

	grep: Find patterns in data
	wc: Count things II
	For-loops

